Mensuration Formula

Mensuration Formula

Mensuration is an interesting branch of mathematics. It studies the measurement of the geometrical figures and shapes like cube, cuboid, cone, sphere, cylinder, etc. We can measure various terms like surface area, volume, perimeter, etc. This article will help to learn and understand various Mensuration Formula with examples. Let us begin!
Mensuration Formula
Source: toppr.com

Mensuration Formula

What is Mensuration?

Mensuration is useful about the measurement of shapes and figures. It is applicable with 2-D and 3-D geometrical shapes both. Using a specific mensuration formula from the many, we will able to solve the mensuration problems easily. So let us see these concepts of mensuration and their formulas.
If a shape is surrounded by three or more straight lines in a plane surface, then it is a 2-D shape. And such shapes are having only length and breadth. If a shape is surrounded by a no. of surfaces or planes then it is termed as 3-D shape. These are having depth, breadth, and length.

Formulas of Mensuration

  1. Area of Square:

A = a2
AArea
aside
  1. Perimeter of Square:

P = 4 × a
PPerimeter
aside
  1. Perimeter of the Rectangle:

P= 2 × ( L+B)
Where,
PPerimeter
LLength
BBreadth
  1. Area of the rectangle:

A= L× B
AArea
LLength
BBreadth
  1. Surface area of a cube:

S = 6 × A2
Where,
SThe surface area of a cube
ALength of the side of a cube
  1. Surface Area of a Cuboid:

S =2 × (LB + BH + HL)
Where,
SSurface Area of Cuboid
LLength of Cuboid
BBreadth of Cuboid
HHeight of Cuboid
  1. Surface Area of a Cylinder:

S= 2 × π × R × (R+H)
Where,
SSurface Area of Cylinder
RThe radius of Circular Base
HHeight of Cylinder
  1. Surface Area of a Sphere:

S =4 × π × R2
Where,
SSurface Area of Sphere
RRadius of Sphere
  1. Surface Area of a Right circular cone:
S = π × r(l+r)
Where,
SSurface Area of Cone
RThe radius of Circular Base
LSlant Height of Cone

  1. Volume of a cube:

V = A3
Where,
VVolume of cube
Aside of cube
  1. Volume of Cuboid:

V = L × B × H
VVolume of Cuboid
LLength of Cuboid
BBreadth of Cuboid
HHeight of Cuboid
  1. Volume of a Cylinder:

V= π × R2 × H
Where,
VVolume of Cylinder
RThe radius of Circular Base
HHeight of Cylinder
  1. Volume of a Right circular cone:

V = ( π × R2 × H ) ÷ 3
Where,
VVolume of Cone
RThe radius of Circular Base
HHeight of Cone
  1. Volume of a Sphere:

V = 43 × π × R3
Where,
VVolume of Sphere
RRadius of Sphere
  1. Volume of a Right circular cone:

V = 13 × π × R× H
Where,
VVolume of Cone
RThe radius of Circular Base
HHeight of Cone

Solved Examples

Q.1: Find out the height of a cylinder with a circular base of radius 70 cm and volume 154000 cubic cm.
Solution: A given here,
r= 70 cm
V= 154000 cubic cm
Since formula is,
V = π × R2 × H
i.e. h =Vπ×R²
=15400015400
= 10 cm
Therefore, height of the cylinder will be 10 cm.

Comments

Popular posts from this blog

Physics